Author:
O'Ferrall RA More,O'Brien D M,Murphy D G
Abstract
Equilibrium constants Kadd = 440 and Kox = 3.0 × 108 for formation of a carbinolamine adduct and oxime, respectively from 9-formylfluorene and hydroxylamine, and pKa = 1.62 for protonation of the oxime, have been evaluated at 25°C in aqueous solution, based on measurements in hydroxylamine buffers, acetic acid buffers, and dilute HCl. Rate constants for hydrolysis of the oxime have been measured in the acidity range pH 412 M HClO4. At the highest acidities, a reaction pathway via protonated carbinolamine has been identified: evidence is presented that the reverse of this reaction involves rate-determining attack of hydroxylamine upon protonated 9-formylfluorene. By assuming that the attack of hydroxylamine is diffusion-controlled, with rate constant 3 × 109 M 1 s1, a pKa for O-protonation of the aldehyde (4.5) is derived. Taking account of the equilibrium constant for enolization of 9-formylfluorene (KE = 16.6), a pKa for for C-protonation of the enol tautomer ((5.7) may also be obtained. Comparison of this pKa with that of the enol of acetophenone shows that the enol of 9-formylfluorene is less basic by a factor of 1010. By combining pKas for protonation of the aldehyde and oxime with measured or estimated equilibrium constants for addition of water, hydroxide ion, and hydroxylamine to 9-formylfluorene, it is also possible to obtain values of pKR = 5.3, 4.1, and 12.25 for the protonated 9-formylfluorene, protonated oxime, and 9-formylfluorene, respectively. The usefulness of pKR in providing a general measure of equilibrium constants for electrophile-nucleophile combination reactions is discussed.Key words: oxime, formyfluorene, hydrolysis, protonation, diffusion-control.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献