Ammonia removal from an aqueous solution by the use of a natural zeolite

Author:

Njoroge B N.K,Mwamachi Slade Gilbert

Abstract

A series of batch experiments were conducted to ascertain the ability of a natural zeolite (a crystalline aluminosilicate) to remove ammonia from synthetic wastewater samples composed of ammonium hydroxide (NH4OH). The reaction with ammonia was observed to be very rapid, with half the amount of ammonium ions being sorbed in the first minute in some instances. Estimated ammonia uptake was favoured by low sorbate concentration, small particle size of sorbent, high temperature, and an alkaline medium. The sorption kinetics studies strongly indicated that the sorption process was largely governed by intraparticle pore diffusion. The effect of temperature on equilibrium at 14 °C and at room temperature (25 °C) showed the sorption process was endothermic, the rate and extent of sorption increasing appreciably with temperature. The equilibrium data fitted the Langmuir sorption model, a possible indication of a monolayer coverage of ammonium ions on the surface of the particle. The Langmuir correlation of the equilibrium data suggested that ion exchange might have been the dominant sorption mechanism. The zeolite seemed to have some fairly good potential for ammonia removal with the sorption capacity being about 4 mmol (NH4+) per 100 g of sorbent. However, this needs to be investigated further through flow-through conditions and in the presence of other ions as in real wastewater. Key words: zeolite, aluminosilicate, sorbent, ammonia nitrogen, sorption, sorbate.

Publisher

Thomas Telford Ltd.

Subject

General Environmental Science,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3