Abstract
Some of the unusual molecular and catalytic properties of a high molecular weight dihydro-orotate dehydrogenase (DHOD) from Neurospora crassa have been determined. Comparison of the properties of this enzyme with the properties of the soluble biosynthetic enzyme of prokaryotes has revealed several important differences. The fungal enzyme is located in a mitochondrial membrane in a position consistent with linkage with the respiratory chain through ubiquinone (Miller, R. W.: Arch. Biochem. Biophys. 146, 256–270 (1971)). Release of the enzyme from the membrane results in a solubilized protein complex containing bound lipids and inactive hydrophobic proteins. Non-specific protein aggregation is minimized during purification by Triton-X-100 and phospholipase treatments. The catalytically active enzyme has an apparent molecular weight of 210 000.In contrast to soluble DHOD preparations the high molecular weight enzyme has no endogenous dihydro-orotate oxidase (EC 1.3.3.1) activity and is relatively insensitive to inactivation by sulfhydryl-reactive reagents in the presence of dihydro-orotate (DHO). The enzyme activity is highly sensitive to conditions causing oxidation of flavin mononucleotide (FMN). The activity cannot be restored by cysteine or other means. FMN is present in all purified preparations in a bound, non-fluorescent (reduced) form until dihydro-orotic acid is removed or oxidized. Catalytic efficiency of the purified enzyme was 12 000 mol DHO oxidized per minute per mole FMN. This high turnover rate is due in part to the small flavin content of the purified enzyme, equivalent to 1 mol FMN per 120 000 g of catalytically active protein. Iron was detected in the purified enzyme by atomic absorption spectroscopy but labile sulfide was absent. Thenoyltrifluoroacetone, an iron chelator, only partially inhibited DHO oxidation regardless of electron acceptor.Fatty acids interact with a hydrophobic site of the enzyme in non-competitive fashion but under certain conditions appear to significantly alter the Km for ubiquinone. Orotate, by comparison, is a purely competitive inhibitor. Both types of inhibitor may function to regulate the biosynthesis of orotate in vivo.Superoxide anion is not produced in significant quantities by the DHO-reduced enzyme unless both ubiquinone and a suitable single electron carrier such as phenazine metho-sulfate are present. DHOD has been proposed as a source of superoxide anion in mammalian mitochondria (Forman, H. J. &Kennedy, J. A.: J. Biol. Chem. 250, 4322–4326(1975)).
Publisher
Canadian Science Publishing
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献