Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA

Author:

Gardes Monique,White Thomas J.,Fortin J. André,Bruns Thomas D.,Taylor John W.

Abstract

We used the polymerase chain reaction (PCR) to amplify specific regions of the nuclear and mitochondrial genomes of fungi using DNA extracted from pure cultures as well as that directly from ectomycorrhizal rootlets. The internal transcribed spacer (ITS) of the nuclear ribosomal repeat unit and a portion of the mitochondrial large subunit ribosomal RNA gene were chosen as target sequences because both exist in high copy number and amplification primers for both discriminate between plant and fungal DNAs. These features provided a sensitivity and specificity sufficient for detection and analysis of a single mycorrhizal rootlet. We evaluated the variations in the amplified products with regard to the length, restriction endonuclease sites, and primary sequence for use in identification of genera, species, and strains of ectomycorrhizal fungi, with particular attention to selected Laccaria species. Accidental contamination of jack pine seedlings by Telephora terrestris was easily recognized. Amplification and direct DNA sequencing of a portion of the ITS were done for three strains of L. bicolor, one of L. laccata, one of L. proximo, and one of T. terrestris. The nucleotide sequence variation was 32% between L. bicolor and T. terrestris, and it ranged from 3 to 5% among the three Laccaria species examined and from 1 to 2% within L. bicolor. The degree of variation observed is sufficient to allow the use of specific oligonucleotides to characterize amplified ITS products. To demonstrate the feasibility of this approach we designed and tested a probe that enabled two isolates of L. bicolor to be distinguished by a single base-pair difference in a filter-based hybridization assay. In combination these methods now provide an important set of tools for the study of mycorrhizal ecology. Key words: internal transcribed spacer, LrDNA gene, mycorrhizal ecology, polymerase chain reaction, rDNA.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3