Parametric invariance and the Pioneer anomaly

Author:

Rañada Antonio F.1,Tiemblo A.2

Affiliation:

1. Facultad de Física, Universidad Complutense, 28040 Madrid, Spain.

2. Instituto de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113b, 28006 Madrid, Spain.

Abstract

It is usually assumed that the t parameter in the equations of dynamics can be identified with the indication of the pointer of a clock. Things are not so simple, however. In fact, because the equations of motion can be written in terms of t but also in terms of t′ = f(t), f being any well-behaved function, any one of those infinite parametric times t′ is as good as the newtonian one to study classical dynamics in hamiltonian form. Here we show that, as a consequence of parametric invariance, one of the foundations of classical dynamics, the relation between the mathematical parametric time t in the equations of dynamics and the physical dynamical time σ that is measured with a particular clock (which is itself a dynamical system) requires the characterization of the clock that is used to achieve a complete treatment of dynamical systems. These two kinds of time, therefore, must be carefully distinguished. Furthermore, we show that not all the dynamical clock-times are necessarily equivalent and that the observational fingerprint of this nonequivalence has, curiously, the same form as that of the Pioneer anomaly. This suggests, therefore, that an acceleration to one another of the astronomical and the atomic times, tastr and tatom, can contribute to the total amount of the anomaly.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Reference35 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Pioneer anomaly in covariant theory of gravitation;Canadian Journal of Physics;2015-11

2. Corrigendum: Parametric invariance and the Pioneer anomaly;Canadian Journal of Physics;2012-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3