Mitochondrial oxidative phosphorylation in hearts subjected to Ca2+ depletion and Ca2+ repletionThis article is one of a selection of papers published in a special issue celebrating the 125th anniversary of the Faculty of Medicine at the University of Manitoba.

Author:

Makazan Zhanna1,Saini-Chohan Harjot K.1,Dhalla Naranjan S.1

Affiliation:

1. Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.

Abstract

Repletion of Ca2+ in the Ca2+-depleted heart has been shown to produce cardiac dysfunction, myocardial cell damage, intracellular Ca2+ overload, and defects in sarcolemmal and sarcoplasmic reticulum function (Ca2+ paradox). Although these alterations in the Ca2+-paradox heart are associated with a depression in the high-energy phosphate stores, little information regarding changes in mitochondrial oxidative phosphorylation is available. Perfusion of rat hearts with Ca2+-free medium for 5 min followed by reperfusion with a medium containing 1.25 mmol/L Ca2+ for 10 min depressed mitochondrial state 3 respiration, respiratory control index, ADP/O ratio, and rate of oxidative phosphorylation without any change in state 4 respiration. These alterations were partially prevented when the reperfusion was carried out with a medium containing low Ca2+ (0.10–0.50 mmol/L). Treatment of heart with inhibitors of sarcolemmal Ca2+ channels (verapamil and diltiazem) or inhibitors of Na+/Ca2+ exchange (KB-R7943) and Na+/H+ exchange (amiloride) failed to modify changes in mitochondrial function due to Ca2+ paradox. Likewise, antioxidants N-acetylcysteine and N-(2-mercaptopropionyl)-glycine and an oxyradical-scavenging mixture of superoxide dismutase and catalase were ineffective in preventing the mitochondrial alterations in the Ca2+-paradox heart. Incubation of mitochondria with various concentrations of Ca2+ inhibited oxidative phosphorylation; this Ca2+-induced change in mitochondrial function was not affected by different oxyradical-scavenging systems. These observations suggest that defects in mitochondrial function in the Ca2+-paradox heart may be due to the occurrence of intracellular Ca2+ overload rather than the development of oxidative stress.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3