MECHANISM OF ACTION OF UDPGal-4-EPIMERASE: ISOTOPE EFFECT STUDIES

Author:

Bevill III Rardon D.,Hill E. Alexander,Smith F.,Kirkwood S.

Abstract

The synthesis of uridine diphosphate glucose and uridine diphosphate galactose labeled with tritium in the 4-position permits the observation of the isotope effect associated with the UDPGal-4-epimerase reaction. This isotope effect has been measured for the reaction proceeding in both directions and the values of kT/kHfall in the range 1.5 to 3.0. This allows certain conclusions to be drawn concerning the mechanism of this important enzymatic catalysis. The direction and magnitude of the effect indicate that the 4-hydrogen is removed from the hexose in the course of the reaction. They also appear to dispose of several mechanisms that have been proposed for the epimerase. Specifically, mechanisms involving cleavage of the C—O or C—C bonds at carbon-4 of the hexose moiety, such as cleavage of the carbon chain, elimination and readdition of the carbon-4 hydroxyl as water, or ionization to form a carbonium ion, are not supported by the observed data. A mechanism consistent with all observations involves transfer of the hydrogen at carbon-4 to the enzyme in a step that is not rate determining. This is followed immediately by the rate-determining step, which may well be the reorganization of the enzyme–substrate complex to allow return of the hydrogen in the opposite configuration. The larger estimate of the isotope effect indicates a transfer of the carbon-4 hydrogen to a nitrogen atom located in the enzyme's structure; the smaller estimate is consistent with transfer to oxygen or carbon. Transfer to sulfur appears to be definitely eliminated.During this work a degradative procedure that will permit the location and quantitation of the carbon-bound tritium in any hexose or pentose was developed.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3