Thermal stress analysis and entropy generation rate due to laser short pulse heating of a metallic surface

Author:

Yilbas Bekir Sami1,Ali Haider1,Al-Dweik Ahmad Yousef2

Affiliation:

1. Mechanical Engineering Department, KFUPM, Dhahran 31261, KSA.

2. Department of Mathematics and Statistics, KFUPM, Dhahran 31261, KSA.

Abstract

An analytical solution is developed for thermal stress in exponentially time decaying laser short-pulse heating of a metallic surface. Because the heating duration is short, a nonequilibrium heating model incorporating the electron kinetic theory approach is used to formulate the temperature distribution during the laser heating pulse. Thermomechanical coupling is introduced in the analysis to formulate the thermal stress field. Thermodynamic irreversibility is considered and the entropy generation rate due to heat transfer and thermal stress field is formulated during the heating process. It is found that temperature decays gradually in the surface region and becomes sharp as the distance increases towards the solid bulk. Thermal stress is compressive in the irradiated region. Thermodynamic irreversibility due to heat transfer dominates thermodynamic irreversibility because of the thermal stress field.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3