Affiliation:
1. IEK-5 Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
2. National Science Center - Kharkov Institute of Physics & Technology, Ukraine.
Abstract
Theoretically predicted values of the open circuit voltage (VOC) for a-Si:H or μc-Si:H based solar cells are substantially higher than the values achieved in of state-of-the-art devices. Fundamentally, open circuit voltage is determined by generation-recombination kinetics, where recombination is often controlled by the defect density in the absorber layer of a solar cell. The latter aspect is the focus of the paper. The relation between the VOC and the bulk recombination in the absorber layer is addressed in experiment by varying the defect density. The absorber layer defect density (spin density, NS, monitored with ESR) in a-Si:H and μc-Si:H solar cells was varied over two orders of magnitude using a 2 MeV electron bombardment and successive stepwise annealing. The results of the electron bombardment experiment are analyzed with respect to the illumination intensity dependency of the VOC, measured for the same set of a-Si:H and μc-Si:H solar cells. We find that the VOC of a-Si:H solar cells is not limited by defects in the bulk of the absorber layer, even at relatively high defect density up to 3–5 × 1016 cm−3 and, therefore, other limiting mechanisms have to be identified to improve voltage in these devices. In contrast, μc-Si:H solar cells show nearly classical VOC–NS relation. The bulk defect density in μc-Si:H absorber layer is thus likely the key limiting factor for VOC in these devices at present status of material quality (NS of 3–7 × 1015 cm−3). Further optimization of μc-Si:H in terms of bulk defect density is highly relevant for VOC improvement in solar cells.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献