Affiliation:
1. Department of Mathematics and Information Science, Neijiang Normal University, Neijiang, Sichuan 641112, P.R. China.
Abstract
Nonstandard Lagrangians are generating functions of different equations of motion. They have gained increasing importance in many different fields. In fact, nonstandard Lagrangians date back to 1978, when Arnold entitled them “non-natural” in his classic book, Mathematical Methods of Classical Mechanics (Springer, New York. 1978). In applied mathematics, most dynamical equations can be obtained by using generating Lagrangian functions (e.g., power-law and exponential Lagrangians), which has been shown by mathematicians, who have also demonstrated that there is an infinite number of such functions. Besides this interesting field, the topic of fractional calculus of variations has gained growing importance because of its wide application in different fields of science. In this paper, we generalize the fractional actionlike variational approach for the case of a nonstandard exponential Lagrangian. To appreciate this new approach, we explore some of its main consequences in Einstein’s general relativity. Some results are revealed and discussed accordingly mainly the transition from general relativity to complex relativity and emergence of a discrete gravitational coupling constant.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献