Affiliation:
1. Faculty of Science, Zagazig Univeristy, Zagazig, 44519, Egypt.
Abstract
In the present paper, we introduce the coupled theory, Lord–Schulman theory, and Green–Lindsay theory to study the influences of a magnetic field and rotation on a two-dimensional problem of fiber-reinforced thermoelasticity subject to thermal loading by a laser pulse. The material is a homogeneous isotropic elastic half-space and is heated by a non-Gaussian laser beam with pulse duration of 8 ps. The method applied here is to use normal mode analysis to solve a thermal shock problem. Deformation of a body depends on the nature of the force applied as well as the type of boundary conditions. Numerical results for the temperature, displacement, and thermal stress components are given and illustrated graphically in the absence and the presence of the magnetic field, rotation, reinforcement, and for two different values of time.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献