Atmospheric aging and light-induced degradation of amorphous and nanostructured silicon using photoconductivity and electron spin resonance

Author:

Saleh Z.M.12,Nogay G.13,Ozkol E.14,Yilmaz G.5,Sagban M.5,Gunes M.5,Turan R.13

Affiliation:

1. Center for Solar Energy Research and Applications (GÜNAM), Middle East Technical University, Ankara, Turkey.

2. Physics Department, Arab American University-Jenin, Jenin, Palestine.

3. Physics Department, Middle East Technical University, Ankara, Turkey.

4. Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey.

5. Physics Department, Mugla Sitki Kocman University, Mugla, Turkey.

Abstract

Previous studies indicate that the dark conductivity in amorphous and microcrystalline silicon may increase or decrease with exposure to deionized water (DIW) or pure oxygen at 80 °C but always decreases with light exposure. While the light-induced effect is linked to paramagnetic dangling bonds (Do), the origin of metastability in microcrystalline silicon remains unclear. In this study, we use steady-state photoconductivity (SSPC), dual-beam photoconductivity (DBP), and electron spin resonance (ESR), to study the behaviors under soaking in DIW and (or) pure oxygen at 80 °C and light-exposure of amorphous (a-Si:H) and nanostructured (nc-Si:H) silicon samples deposited in a capacitively coupled plasma-enhanced chemical vapor deposition system. Powders from thick samples of low and high crystallinity (Xc) peeling off large substrates were collected in quartz tubes for ESR measurements. Dark conductivity decreases upon exposure to pure oxygen at 80 °C for nc-Si:H but remains unchanged for a-Si:H. The ESR signal attributed to Do decreases with soaking in DIW for high and low crystallinity nc-Si:H but the effect is more significant for higher Xc. Changes in SSPC, DBP, and ESR are used to compare the degradation mechanisms because of O2 exposure and light for amorphous and nanostructured silicon.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3