Affiliation:
1. CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, boulevard des Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France.
2. Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, boulevard des Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France.
Abstract
At centimetre scale, soil bacterial assemblages are shaped by both abiotic (edaphic characteristics and pollutants) and biotic parameters. In a rhizobox experiment carried out on planted industrial soil contaminated with polycyclic aromatic hydrocarbons (PAHs), we previously showed that pollution was distributed randomly with hot and cold spots. Therefore, in the present study, we investigated the effect of this patchy PAH distribution on the bacterial community assemblage and compared it with that of root depth gradients found in the rhizosphere of either alfalfa or ryegrass. Sequencing of 16S rRNA amplicons revealed a higher bacterial diversity in ryegrass rhizosphere and enrichment in specific taxa by the 2 plant species. Indeed, Bacteroidetes, Firmicutes, and Gammaproteobacteria were globally favored in alfalfa, whereas Acidimicrobiia, Chloroflexi, Alpha-, and Betaproteobacteria were globally favored in ryegrass rhizosphere. The presence of alfalfa created depth gradients of root biomass, carbohydrate, and pH, and actually shaped the bacterial assemblage, favoring Actinobacteria near the surface and Gemmatimonadetes and Proteobacteria at greater depths. Contrarily, the bacterial assemblage was homogeneous all along depths of the ryegrass root system. With both plant species, the PAH content and random distribution had no significant effect on bacterial assemblage. Globally, at centimeter scale, bacterial community assemblages were mostly shaped by soil physical and chemical depth gradients induced by root growth but not by patchy PAH content.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献