Rhizosphere effect is stronger than PAH concentration on shaping spatial bacterial assemblages along centimetre-scale depth gradients

Author:

Bourceret Amélia12,Leyval Corinne12,Thomas François12,Cébron Aurélie12

Affiliation:

1. CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, boulevard des Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France.

2. Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, boulevard des Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France.

Abstract

At centimetre scale, soil bacterial assemblages are shaped by both abiotic (edaphic characteristics and pollutants) and biotic parameters. In a rhizobox experiment carried out on planted industrial soil contaminated with polycyclic aromatic hydrocarbons (PAHs), we previously showed that pollution was distributed randomly with hot and cold spots. Therefore, in the present study, we investigated the effect of this patchy PAH distribution on the bacterial community assemblage and compared it with that of root depth gradients found in the rhizosphere of either alfalfa or ryegrass. Sequencing of 16S rRNA amplicons revealed a higher bacterial diversity in ryegrass rhizosphere and enrichment in specific taxa by the 2 plant species. Indeed, Bacteroidetes, Firmicutes, and Gammaproteobacteria were globally favored in alfalfa, whereas Acidimicrobiia, Chloroflexi, Alpha-, and Betaproteobacteria were globally favored in ryegrass rhizosphere. The presence of alfalfa created depth gradients of root biomass, carbohydrate, and pH, and actually shaped the bacterial assemblage, favoring Actinobacteria near the surface and Gemmatimonadetes and Proteobacteria at greater depths. Contrarily, the bacterial assemblage was homogeneous all along depths of the ryegrass root system. With both plant species, the PAH content and random distribution had no significant effect on bacterial assemblage. Globally, at centimeter scale, bacterial community assemblages were mostly shaped by soil physical and chemical depth gradients induced by root growth but not by patchy PAH content.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3