Symbiosis of selected Rhizobium leguminosarum bv. viciae strains with diverse pea genotypes: effects on biological nitrogen fixation

Author:

Yang Chao1,Bueckert Rosalind1,Schoenau Jeff2,Diederichsen Axel3,Zakeri Hossein4,Warkentin Tom1

Affiliation:

1. Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.

2. Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.

3. Plant Gene Resources of Canada, Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.

4. College of Agriculture, California State University, Chico, CA 95929-0310, USA.

Abstract

Biological nitrogen fixation (BNF) can be improved by optimizing the interaction between the rhizobial inoculant and pea (Pisum sativum L.), leading to increased productivity and reduced nitrogen (N) fertilizer use. Eight Rhizobium leguminosarum bv. viciae strains were used to inoculate the super-nodulating pea mutant Rondo-nod3 (fix+), the hyper-nodulating pea mutant Frisson P88 Sym29, CDC Meadow commercial control, and the non-nodulating mutant Frisson P56 (nod–) to evaluate BNF in a greenhouse assay. Significant differences in strain × cultivar interactions were detected for shoot and root dry masses, which ranged from 1.8 to 4.7 g and from 0.27 to 0.73 g per plant, respectively; for nodule number on lateral roots, which ranged from 25 to 430 per plant; for amount of fixed N2, which ranged from 15 to 67 mg and from 4 to 15 mg per plant for shoot and root tissues, respectively; and for percentage of N derived from atmosphere (%Ndfa), which ranged from 37% to 61% and from 35% to 65% for shoot and root tissue, respectively. Strain × cultivar interactions in this study could contribute to identification of superior strains and pea breeding lines with genetic superiority in BNF. Nodule production in pea plants was not necessarily correlated with the amount of fixed N2, suggesting nodule activity is more important to BNF than is nodule number.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3