Reduction of cadmium uptake in rice endophytically colonized with the cadmium-tolerant bacterium Cupriavidus taiwanensis KKU2500-3

Author:

Punjee Putthita1,Siripornadulsil Wilailak12,Siripornadulsil Surasak123

Affiliation:

1. Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand.

2. Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, Thailand.

3. Genomics and Proteomics Research Group for Improvement of Salt-tolerant Rice, Khon Kaen University, Khon Kaen, Thailand.

Abstract

The effects of the cadmium (Cd)-tolerant bacterium Cupriavidus taiwanensis KKU2500-3 on the growth, yield, and Cd concentration in rice grains were investigated in the rice variety Phitsanulok 2 (PL2), which was cultivated in a hydroponic greenhouse. The numbers of Cd-tolerant bacteria isolated from the roots and shoots of plants under the RB (rice with bacteria) and RBC (rice with bacteria and Cd) treatments ranged from 2.60 to 9.03 and from 3.99 to 9.60 log cfu·g−1 of PL2, respectively. This KKU2500-3 strain was successfully colonized in rice, indicating that it was not only nontoxic to the plants but also became distributed and reproduced throughout the plants. Scanning electron microscopy analysis revealed attachment of the bacterium to the root surface, whereas the internally colonized bacteria were located in the vascular tissue, cell wall, and intercellular space. Although the Cd contents found in PL2 were very high (189.10 and 79.49 mg·kg−1 in the RC (rice with Cd) and RBC roots, respectively), the Cd accumulated inside the rice seeds at densities of only 3.10 and 1.31 mg·kg−1, respectively; thus, the bacteria reduced the Cd content to 57.74% of the control content. Therefore, the colonizing bacteria likely acted as an inhibitor of Cd translocation in PL2.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3