Foot-and-mouth disease virus infection stimulates innate immune signaling in the mouse macrophage RAW 264.7 cells

Author:

Zhi Xiaoying12,Lv Jianliang2,Wei Yanquan2,Du Ping2,Chang Yanyan2,Zhang Yun2,Gao Yuan123,Wu Run1

Affiliation:

1. College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070 Gansu, People’s Republic of China.

2. State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu, People’s Republic of China.

3. College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu, People’s Republic of China.

Abstract

The innate immune system acts as the first line of defense against invasion by bacterial and viral pathogens. The role of macrophages in innate immune responses to foot-and-mouth disease virus (FMDV) is poorly understood. To determine the mechanism underlying activation of innate immunity after FMDV infection in macrophages, we performed FMDV infection in mouse macrophage RAW 264.7 cells and found that FMDV serotype O infection induced a cytopathic effect. We then evaluated the gene expression profile in macrophage RAW 264.7 cells after FMDV infection using systematic microarray analysis. Gene ontology annotation and enrichment analysis revealed that FMDV promoted expression in a group of genes that are enriched in innate immune response and inflammatory response processes. Further research demonstrated that FMDV serotype O infection enhanced NF-κB, Toll-like, and RIG-I-like receptor signaling pathways and proteins expression and increased transcription and expression of a series of cytokines and interferons, as proved by qRT-PCR, Western blot, ELISA, and dual-luciferase reporter assay. Our study concluded that FMDV infection triggers the innate immune response in macrophages after activation of multiple innate immune pathway receptors and proteins by FMDV serotype O, resulting in activation and secretion of a series of cytokines and interferons.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3