Author:
El Naggar M Hesham,Wei Jin Qi
Abstract
Tapered piles have a substantial advantage with regard to their load-carrying capacity in the downward frictional mode. The uplift performance of tapered piles, however, has not been fully understood. This paper describes the results of an experimental investigation into the characteristics of the uplift performance of tapered piles. Three instrumented steel piles with different degrees of taper were installed in cohesionless soil and subjected to compressive and tensile load tests. The soil was contained in a steel soil chamber and pressurized using an air bladder to facilitate modelling the confining pressures pertinent to larger embedment depths. The results of this study indicated that the pile axial uplift capacity increased with an increase in the confining pressure for all piles examined in this study. The ratios of uplift to compressive load for tapered piles were less than those for straight piles of the same length and average embedded diameter. The uplift capacity of tapered piles was found to be comparable to that of straight-sided wall piles at higher confining pressure values, suggesting that the performance of actual tapered piles (with greater length) would be comparable to that of straight-sided wall piles. Also, the results indicated that residual stresses developed during the compressive loading phase and their effect were more significant on the initial uplift capacity of piles, and this effect was more pronounced for tapered piles in medium-dense sand.Key words: tapered piles, uplift, axial response, load transfer, experimental modelling.
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献