Fine structure of degenerating and regenerating flight muscles in a bark beetle, Ips confusus. II. Regeneration

Author:

Bhakthan N. M. G.,Nair K. K.,Borden J. H.

Abstract

The flight muscles of the bark beetle Ips confusus regenerate by two means, by formation and differentiation of new myoblasts, and by the regeneration of the old flight muscle itself. Mononucleated myoblasts appear in beetles which have been in the inner bark of ponderosa pine logs for 5 days. These cells apparently fuse with other myoblasts to form multinucleated cells. By the end of the ninth day of regeneration the myofilaments become attached to an incoherent Z line. By the 11th day of regeneration these differentiating myoblasts appear very much like the fibers of the regenerating old flight muscle.Simultaneously the fibers of the old degenerate muscles show signs of regeneration. On the sixth day after the beetles entered the bark, rearrangement of the existing degenerate myofilaments takes place. The incoherent and diffused Z line shows some degree of reorganization. Numerous ribosomes are present between the filaments. Between the 7th to 11th days of regeneration the mitochondria appear to fuse to form giant mitochondria up to five sarcomeres in length. These mitochondria by subsequent divisions give rise to numerous mitochondria. Almost invariably the line of mitochondrial fission is aligned with the Z line. The presence of numerous ribosomes and polysomes in the fibers indicate a high protein synthetic activity. By the end of the 13th day regeneration of the flight muscle appears complete and the beetles are now ready to reemerge. These results further confirm our earlier observation (Bhakthan et al. 1970) that flight muscle degeneration in I. confusus is a reversible process.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3