Luminal Ca2+ regulation of RyR1 Ca2+ channel leak activation and inactivation in sarcoplasmic reticulum membrane vesicles

Author:

Palahniuk C.1,Mutawe M.2,Gilchrist J.S.C.3

Affiliation:

1. Department of Biology, St. Catherine University, 2004 Randolph Ave., St. Paul, MN 55105, USA.

2. Genome Analysis Core (GAC), 13-66 Stabile Building, MAYO Clinic, Rochester, MN 55905, USA.

3. Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, MB R3E 0W2, Canada.

Abstract

In this study, we tested the hypothesis that the RyR1 Ca2+ channel closure is sensitive to outward trans-SR membrane Ca2+ gradients established by SERCA1 pumping. To perform these studies, we employed stopped-flow rapid-kinetic fluorescence methods to measure and assess how variation in trans-SR membrane Ca2+ distribution affects evolution of RyR1 Ca2+ leaks in RyR1/ CASQ1/SERCA1-rich membrane vesicles. Our studies showed that rapid filling of a Mag-Fura-2-sensitive free Ca2+ pool during SERCA1-mediated Ca2+ sequestration appears to be a crucial condition allowing RyR1 Ca2+ channels to close once reloading of luminal Ca2+ stores is complete. Disruption in the filling of this pool caused activation of Ruthenium Red inhibitable RyR1 Ca2+ leaks, suggesting that SERCA1 pump formation of outward Ca2+ gradients is an important aspect of Ca2+ flux control channel opening and closing. In addition, our observed ryanodine-induced shift in luminal Ca2+ from free to a CTC–Ca+-sensitive, CASQ1-associated bound compartment underscores the complex organization and regulation of SR luminal Ca2+. Our study provides strong evidence that RyR1 functional states directly and indirectly influence the compartmentation of luminal Ca2+. This, in turn, is influenced by the activity of SERCA1 pumps to fill luminal pools while synchronously reducing Ca2+ levels on the cytosolic face of RyR1 channels.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3