Mild hyperhomocysteinemia induces blood–brain barrier dysfunction but not neuroinflammation in the cerebral cortex and hippocampus of wild-type mice

Author:

Chu Min1,Teng Jijun1,Guo Lei2,Wang Yuyang3,Zhang Liang1,Gao Jing1,Liu Lijun1

Affiliation:

1. Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.

2. Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.

3. Department of Rehabilitation, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.

Abstract

This study explored the potential effects of mild hyperhomocysteinemia (HHcy) on the blood–brain barrier (BBB) and neuroinflammation. Seven-week-old male wild-type C57BL/6 mice were fed normal mouse chow (the control group) or a methionine-enriched diet (the HHcy group) for 14 weeks. Mice in the HHcy group exhibited a slight increase in serum Hcy levels (13.56 ± 0.61 μmol/L). Activation of the ERK signaling pathway, up-regulation of matrix metalloproteinase-9 (MMP-9), and degradation of tight junction proteins (occludin and claudin-5) were observed in both the cerebral cortex and hippocampus of mice with mild HHcy. However, microglia were not activated and the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were not changed in either the cerebral cortex or hippocampus of mice with mild HHcy. Moreover, the signaling activity of STAT3 also did not differ significantly between the two groups. These findings demonstrate that the BBB is highly vulnerable to homocysteine insult. Even a slight increase in serum homocysteine levels up-regulates MMP-9 expression and disrupts the BBB integrity. Meanwhile, microglia activation or the STAT3 pathway might not contribute to the effects of mild HHcy on the brain.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3