Restoration of cardiac metabolic flexibility by acetate in high-fat diet-induced obesity is independent of ANP/BNP modulation

Author:

Olaniyi K.S.12ORCID,Atuma C.L.1,Sabinari I.W.2,Hadiza M.1,Saidi A.O.1,Akintayo C.O.1,Ajadi I.O.3,Olatunji L.A.2

Affiliation:

1. Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria

2. HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240001, Nigeria

3. Department of PhysiologyCollege of Health Sciences, Ladoke AkintolaUniversity of Technology, P.M.B. 4000, Ogbomoso, 210214, Nigeria

Abstract

The present study hypothesized that cardiac metabolic inflexibility is dependent on cardiac atrial natriuretic peptide/brain natriuretic peptide (ANP/BNP) alteration and histone deacetylase (HDAC) activity. We further sought to investigate the therapeutic potential of short-chain amino acid (SCFA) acetate in high-fat diet (HFD)-induced obese rat model. Adult male Wistar rats were assigned into groups ( n = 6 per group): Control, Obese, and Sodium acetate (NaAc)-treated and Obese + NaAc-treated groups received distilled water once daily (oral gavage), 40% HFD ad libitum, 200 mg/kg NaAc once daily (oral gavage), and 40% HFD + NaAc, respectively. The treatments lasted for 12 weeks. HFD resulted in increased food intake, body weight, and cardiac mass. It also caused insulin resistance and enhanced β-cell function, increased fasting insulin, lactate, plasma and cardiac triglyceride, total cholesterol, lipid peroxidation, tumor necrosis factor-α, interleukin-6, HDAC, and cardiac troponin T and γ-glutamyl transferase, and decreased plasma and cardiac glutathione with unaltered cardiac ANP and BNP. However, these alterations were averted when treated with acetate. Taken together, these results indicate that obesity induces defective cardiac metabolic flexibility, which is accompanied by an elevated level of HDAC and not ANP/BNP alteration. The results also suggest that acetate ameliorates obesity-induced cardiac metabolic inflexibility by suppression of HDAC and independent of ANP/BNP modulation.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3