Melatonin modulates acute cardiac muscle damage induced by carbon tetrachloride — involvement of oxidative damage, glutathione, and arginine and nitric oxide metabolism

Author:

Ćirić Zdravković Snezana12,Kostić Tomislav12,Marcetić Zoran P.3,Šulović Ljiljana S.3,Nedeljković Biserka M.3,Preljević Adem4,Toskić Dragan5,Sokolović Dušan2

Affiliation:

1. Clinic for Cardiovascular Diseases, Clinical Center Niš, University of Niš, Niš, Serbia.

2. Faculty of Medicine, University of Niš, Niš, Serbia.

3. Medical Faculty, University of Pristina, Kosovska Mitrovica, Serbia.

4. State University of Novi Pazar, Novi Pazar, Serbia.

5. Faculty of Sport and Physical Education Leposavic, University of Pristina, Pristina, Serbia.

Abstract

The present study was designed to evaluate the cardioprotective effects of melatonin (a single dose of 50 mg·kg–1), a naturally occurring polypharmacological molecule, in Wistar rats acutely exposed to carbon tetrachloride (CCl4). This was done for the first time by tracking different biochemical parameters that reflect rat heart antioxidative and oxidative capacities, nitric oxide and arginine metabolism, and the glutathione cycle. Additionally, the extrinsic apoptosis pathway related parameters were studied. Acute exposure to CCl4 led to an increase in the studied tissue oxidant parameters (hydrogen peroxide, malondialdehyde, and carbonylated protein content), as well as the activity alteration of antioxidant (catalase, superoxide dismutase, and peroxidase) and glutathione-metabolizing (glutathione peroxidase, S-transferase, and reductase) enzymes. Furthermore, CCl4 caused a disturbance in the tissue myeloperoxidase, nitric oxide, citrulline, arginase, and inducible nitric oxide synthase content and activities and in two apoptosis-related parameters, caspase-3 and FAS ligand. Melatonin as a post-treatment prevented the changes induced by CCl4 to a differing extent, and in some cases, it was so potent that it completely abolished any tissue disturbances. This study is a promising starting point for further research directed to the development of melatonin treatment in cardiac tissue associated diseases.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3