Affiliation:
1. Área Académica de Medicina del Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, Mexico.
2. Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
Abstract
The aim of this study was to examine if the peripheral antinociceptive effects of the opioid agonist/antagonist nalbuphine and buprenorphine involve the sequential participation of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) synthesis followed by K+channel opening in the formalin test. Wistar rats (180–220 g) were injected in the dorsal surface of the right hind paw with formalin (1%). Rats received a subcutaneous (s.c.) injection into the dorsal surface of the paw of vehicles or increasing doses of nalbuphine (50–200 μg/paw) or buprenorphine (1–5 μg/paw) 20 min before formalin injection into the paw. Nalbuphine antinociception was reversed by the s.c. injection into the paw of the inhibitor of NO synthesis (NG-nitro-l-arginine methyl ester (L-NAME)), by the inhibitor of guanylyl cyclase (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ)), by the Kir6.1–2, ATP-sensitive K+channel inhibitors (glibenclamide and glipizide), by the KCa2.1–3, small conductance Ca2+-activated K+channel blocker (apamin), by the KCa1.1, large conductance Ca2+-activated K+channel blocker (charybdotoxin), and by the KV, voltage-dependent K+channel inhibitors (4-aminopyridine (4-AP) and tetraethylammonium chloride (TEA)). The antinociceptive effect produced by buprenorphine was blocked by the s.c. injection of 4-AP and TEA but not by L-NAME, ODQ, glibenclamide, glipizide, apamin, or charybdotoxin. The present results provide evidence for differences in peripheral mechanisms of action between these opioid drugs.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献