Modulatory effect of simvastatin on redox status, caspase-3 expression, p-protein kinase B (p-Akt), and brain-derived neurotrophic factor (BDNF) in an ethanol-induced neurodegeneration model

Author:

Nasef Nahla A.11,Keshk Walaa A.11,El-Meligy Salwa M.11,Allah Ahmed A. Abd11,Ibrahim Wafaa M.11

Affiliation:

1. Department of Medical Biochemistry & Molecular Biology Faculty of Medicine, Tanta University, Tanta, Egypt.

Abstract

Neurodegenerative diseases are a common cause of morbidity and mortality worldwide, with oxidative stress, inflammation, and protein aggregation representing the main underlying mechanisms that ultimately lead to cell death. Ethanol has shown strong neurodegenerative consequences in experimental animal brains. Statins are a class of lipid-lowering drugs with many pleotropic effects. Therefore, the aim of the present study was to explore the modulatory effect of simvastatin (10 mg·kg–1·day–1) before and after the development of neurodegeneration (for 55 and 25 days, respectively) on redox state, caspase-3 expression, p-protein kinase B (p-Akt), and brain-derived neurotrophic factor (BDNF) in ethanol-induced (15% ethanol solution for 55 days) neurodegeneration. Seventy female Albino Swiss mice were included and randomly divided into five groups: C, control group; E, ethanol group; ES, group treated with simvastatin from the first day of ethanol intake; E + S, group treated with simvastatin after neurodegeneration development; and S, simvastatin group. Administration of simvastatin from the first day improved the biochemical changes, suppressed apoptosis, and induced autophagy and neurogenesis; however, its administration after the development of neurodegeneration resulted in partial improvement. The histopathological findings confirmed the biochemical changes. In conclusion, simvastatin has a neuroprotective effect against the development of ethanol-induced neurodegeneration and its progression.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3