Cyanidin-3-O-glucoside attenuates high glucose–induced podocyte dysfunction by inhibiting apoptosis and promoting autophagy via activation of SIRT1/AMPK pathway

Author:

Wang Shu1,Huang Yuqing1,Luo Guangyan1,Yang Xin1,Huang Wei2

Affiliation:

1. Southwest Medical University, LuZhou City, SiChuan Province, China.

2. The Affiliated Hospital of Southwest Medical University, LuZhou City, SiChuan Province, China.

Abstract

Diabetic nephropathy (DN) is a common and complicated chronic kidney disease around the world. To elucidate and find effective therapies of DN is of vital importance. In this paper, we have discovered that cyanidin-3-O-glucoside (C3G), which is one of the anthocyanins, could alleviate high glucose–induced podocyte dysfunction. MTT, flow cytometry assay, and Western blot analysis showed that C3G could reverse the increase of cell apoptosis under high glucose treatment in MPC5 cells by upregulation of Bcl2 and downregulation of Bax and cleaved caspase-3. Moreover, C3G improved the autophagy decrease that was induced by high glucose through regulating the expression level of LC3-II/LC3-I, Beclin1, and p62. In addition, C3G inhibited epithelial-mesenchymal transition (EMT) by increasing E-cadherin and reducing Vimentin. By further study of the mechanisms, we found C3G activated the SIRT1 and AMPK which were inhibited in high glucose condition. Silencing SIRT1 blocked the effect of C3G on regulating cell apoptosis, autophagy, and EMT. In summary, our current findings suggest the protective effect of C3G against high glucose–induced podocyte dysfunction is by improving autophagy and reducing apoptosis and EMT via activating SIRT1/AMPK pathway. It might be a new insight for the treatment of DN.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3