Caloric restriction improves inflammation in different tissues of the Wistar rats with obesity and 2K1C renovascular hypertension

Author:

Pizzo Thayane Rafaela Feola1ORCID,Valverde Ana Paula1,Orzari Lucas Eduardo1,Terciotti Luiz Gustavo1,de Lima Robson Damasceno1,Costa do Bomfim Fernando Russo1,Esquisatto Marcelo Augusto Marreto1,de Andrade Thiago Antônio Moretti1,Corezola do Amaral Maria Esméria1ORCID,de Oliveira Camila Andrea1,Felonato Maíra1

Affiliation:

1. Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation—FHO, Av. Dr. Maximiliano Baruto, 500—Jd. Universitário, 13607-339, Araras, São Paulo, Brasil

Abstract

Renovascular hypertension (RHV) is the cause of high blood pressure due to left renal ischemia, and obesity and hypertension cause an inflammatory response. This work analyzed the inflammatory and tissue repair profile in renal, hepatic, and cardiac tissues in an animal model of RVH associated with a high-fat diet and caloric restriction. The expressions of RORγ-t, IL-17, T-bet, and TNF-α decreased and IFN-γ increased in the right kidney. In relation to the left kidney, caloric restriction decreased the expression of IFN-γ. In the liver, caloric restriction decreased RORγ-t, IL-17, and T-bet. Hypertension associated with obesity decreased the expression of IFN-γ, while caloric restriction increased. In the right kidney, hypertension and obesity, associated or not with caloric restriction, increased the area of collagen fibers. In the heart and liver, caloric restriction reduced the area of collagen fibers. Caloric restriction increased vascular endothelial growth factor, reduced levels of growth transformation factor-β1 (TGF-β), and increased collagen I in the left kidney. Hypertension/obesity, submitted or not having caloric restriction, increased TGF-β in liver. The results suggest that caloric restriction has beneficial effects in lowering blood pressure and regulating tissue proinflammatory cytokines. However, there was no change in the structure and composition of tissue repair markers.

Funder

Herminio Ometto Foundation

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3