Endothelin system expression in the kidney following cisplatin-induced acute kidney injury in male and female mice

Author:

Gales Anabelle1,Monteiro-Pai Sureena1,Hyndman Kelly A.1ORCID

Affiliation:

1. Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA

Abstract

The chemotherapeutic agent cisplatin accumulates in the kidney and induces acute kidney injury (AKI). Preclinical and clinical studies suggest that young female mice and women show greater recovery from cisplatin-AKI compared to young male mice and men. The endothelin (ET) and ET receptors are enriched in the kidney and may be dysfunctional in cisplatin-AKI; however, there is a gap in our knowledge about the putative effects of sex and cisplatin on the renal ET system. We hypothesized that cisplatin-AKI male and female mice will have increased expression of the renal ET system. As expected, all cisplatin-AKI mice had kidney damage and body weight loss greater than control mice. Cisplatin-AKI mice had greater cortical Edn1, Edn3, Ednra, and Ednrb, while outer medullary Ednra was significantly suppressed in both sexes. Of the ∼25 000 genes sequenced from the inner medulla, only 91 genes (comparing saline mice) and 134 genes (comparing cisplatin-AKI mice) were differentially expressed and they were unrelated to the ET system. However, Edn1 was significantly greater in the inner medulla of male and female cisplatin-AKI mice. Thus, RNA profiles of the ET system were significantly affected by cisplatin-AKI throughout the kidney regardless of sex and this may help determine the therapeutic potential of targeting the ET receptors in cisplatin-AKI.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

National Institutes of Health

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3