Author:
Achari Gopal,Joshi R C,Bentley L R,Chatterji S
Abstract
A model to predict the hydraulic conductivity of consolidated clay, simulating clay liners compacted wet of optimum, is presented. The concept that clays exist as clusters and the electrical double layer theory are used to predict the hydraulic conductivity of clays for permeants of known composition. The model relates the physical properties of clays, such as its surface area, with the overburden pressure and the concentration of ions in the permeant. The model can be used to predict the hydraulic conductivity of bentonitic clays with monovalent as well as divalent exchangeable cations. The model is valid within the range of applicability of the Gouy-Chapman electric double layer theory. The variation in the number of clay particles per cluster with the consolidation pressure and concentration of ions in the permeant has been discussed. The model has been calibrated and verified using published experimental data. However, the model in its present form is valid only for homoionic clays and permeants with the same valency. With an increase in concentration of ions in the permeant, the precision of the model has been found to decrease. Key words: clay, clusters, hydraulic conductivity, double layer, model, permeant, concentration.
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献