Study of micropolar nanofluids with power-law spin gradient viscosity model by the Keller box method

Author:

Akmal N.11,Sagheer M.11,Hussain S.11,Kamran A.11

Affiliation:

1. Department of Mathematics, Capital University of Science and Technology, Islamabad, Pakistan.

Abstract

The spin gradient viscosity with power-law model and its representation of the heat transfer capabilities of nanofluids have been examined. The theoretical analysis provides an insight into the heat conduction properties of shear-thinning and the shear-thickening fluids. Boundary-layer-approximation-based nonlinear partial differential equations are transformed into nonlinear ordinary differential equations before their solution is approximated by the finite-difference-based Keller box method. The results demonstrate that the heat exchange in nanofluids is affected substantially by the index exponent and the modified material parameter. In addition, the physical quantities of interest from the engineering perspective, the Nusselt and the Sherwood numbers, are calculated to examine the heat and mass transport efficiency of the nanofluids. It is discovered that the temperature profile augments with an increase in the Brownian motion and thermophoresis parameters and decreases with an increase in the Prandtl number and power-law index. However, the concentration deceases with a rise in the Brownian motion parameter and Lewis number, but increases with an increase in the thermophoresis parameter, Prandtl number, and the power-law index.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3