Affiliation:
1. Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454, Iran.
2. Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha, Iran.
Abstract
We consider the Brans–Dicke (BD) theory of gravity and explore the cosmological implications of the sign-changeable interacting holographic dark energy (HDE) model in the background of a Friedmann–Robertson–Walker (FRW) universe. As the system’s infrared cutoff, we choose the future event horizon, the Granda–Oliveros (GO), and the Ricci cutoffs. For each cutoff, we obtain the density parameter, the equation of state (EoS), and the deceleration parameter of the system. In case of future event horizon, we find out that the EoS parameter, wD, can cross the phantom line; as a result the transition from the deceleration to the acceleration of the Universe expansion can be achieved provided the model parameters are chosen suitably. We also investigate the instability of the sign-changeable interacting HDE model against perturbations in BD theory. For this purpose, we study the squared sound speed [Formula: see text] whose sign determines the stability of the model. When [Formula: see text] the model is unstable against perturbation. For future event horizon, our Universe can be stable ([Formula: see text]) depending on the model parameters. Then, we focus on GO and Ricci cutoffs and find out that although other features of these two cutoffs are consistent with observations, they cannot lead to stable dominated universe, except in a special case with GO cutoff. Our studies confirm that for the sign-changeable HDE model in the setup of BD cosmology, the event horizon is the most suitable horizon that can pass all conditions and leads to a stable dark-energy-dominated universe.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献