Affiliation:
1. Department of Mathematics, Quaid-i-Azam University, 45320, Islamabad 44000, Pakistan.
Abstract
The effect of mass suction with temperature jump and velocity slip of viscous, unsteady nanofluid flow past a curved shrinking–stretching surface is analyzed in this work. Copper (Cu) and water are considered nanoparticles and base fluids, respectively. The complicated coupled system of differential equations is converted into non-dimensional form with some suitable similarity variables. The solution of the nonlinear problem is produced by use of numerical scheme available in the form of bvp4c package in MATLAB. In the case of shrinking towards the surface, a reverse flow situation is also developed and requires careful selection of solution by examining the stability of the solution. Detailed stability analysis is done and critical values are determined for the possible existence of dual solutions. Variation in parameters is analyzed by plotting graphs and tables. The numerical values are also calculated for the reduced Nusselt number and skin friction due to variation in values of different flow parameters. Results have shown that for the curved shrinking surfaces, one should expect multiple solutions for a set of parameter values such as mass suction, curvature, nanoparticles volume fraction, and unsteadiness.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献