Affiliation:
1. School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China.
Abstract
Motivated by quantum statistical mechanics, we propose an accurate analytical solution to the problem of Bose–Einstein condensation (BEC) of ideal bosons in a two-dimensional anisotropic harmonic trap. The study reveals that the number of noncondensed bosons is characterized by an analytical function, which relates to a series expansion of q-digamma functions in mathematics. The q-digamma function is a function of temperature, boson number, and anisotropic parameter. The analytical solution describes fully the experimental results of the BEC of ideal bosons in a two-dimensional anisotropic harmonic trap. We derive the analytical expressions of the critical temperature and the condensate fraction in the thermodynamic limit. The first main conclusion is that for a fixed temperature and boson number, there is a critical anisotropic parameter, which is the precise onset of BEC in this harmonically trapped two-dimensional system. The second main conclusion is that the critical temperature in a two-dimensional anisotropic harmonic trap is larger than that in a two-dimensional isotropic harmonic trap.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献