Examination of EmrE conformational differences in various membrane mimetic environments

Author:

Federkeil Sandra L,Winstone Tara L,Jickling Glen,Turner Raymond J

Abstract

Ethidium multidrug resistance protein (EmrE) is a member of the small multidrug resistance family of proteins and is responsible for resistance in Escherichia coli to a diverse group of lipophilic cations. Research is beginning to elucidate structural information as well as substrate binding and extrusion mechanisms for this protein. However, the choice of membrane mimetic environment to perform structural studies needs to be made. In this study EmrE was solubilized in different membrane mimetic environments to investigate the influence of environment on the structure and dynamics of the protein by comparing the fluorescence properties of emission maxima, peak shifts, relative intensities, acrylamide quenching constants, and polarization. Taken together, the different fluorescence observations on EmrE in the various membrane mimetic systems tested suggest that the tryptophan residues in EmrE are present in the most flexible and exposed state when solubilized in methanol, followed by sodium dodecyl sulfate and urea. The two detergents N-dodecyl-β-D-maltoside (DM) and polyoxyethylene(8)dodecyl ether, for the most part, only display subtle differences between the spectral properties with DM best representing the lipid environment. The conformation of EmrE is clearly more open and dynamic in detergent relative to being reconstituted in small unilamellar vesicles. The fluorescence observations of EmrE solubilized in trifluoroethanol shows an environment that is similar to that of EmrE solubilized in detergents. Additionally, secondary structure was monitored by circular dichroism (CD). The CD spectra were similar among the different solubilizing conditions, suggesting little difference in α-helical content. This work establishes groundwork for the choice of solubilizing conditions for future structural, folding, and ligand binding studies.Key words: SMR, EmrE, tryptophan fluorescence, membrane proteins, detergent solubilization, membrane mimetic.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3