Potential Role of Sponge Spicules in Influencing the Silicon Biogeochemistry of Florida Lakes

Author:

Conley Daniel J.,Schelske Claire L.

Abstract

Amorphous silica, e.g. biogenic silica (BSi), contained in diatoms and in sponge spicules was estimated by time course extraction from surficial sediment samples of 82 Florida lakes. Separation of diatom BSi from sponge BSi was based on the observation that diatoms completely dissolve within 2 h of digestion at 85 °C in 1% Na2CO3 whereas sponge spicules, which are generally larger than diatoms, take longer to dissolve. Sponge samples from four lakes in northern Wisconsin ranged widely in the time required to dissolve completely (1.5–12 h), but no significant differences were observed in the rates of dissolution among the lakes. In Florida lake sediments, diatom BSi averaged 49.2 (± 48.4) mg∙g−1 and sponge BSi averaged 31.5 (± 35.8) mg∙g−1, with sponge BSi comprising on average 40% of the total amorphous silica extracted. The procedure for separating diatom BSi from sponge BSi underestimates sponge BSi because smaller and/or lightly silicified components of sponges are completely dissolved early in the digestion. However, because sponge spicules comprise a significant fraction of total amorphous silica extracted, we hypothesize that sponge spicules, which on average are larger than diatoms and require a longer time for complete dissolution, may constitute an important sink for BSi in Florida lakes.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3