Organic nitrates, thionitrates, peroxynitrites, and nitric oxide: a molecular orbital study of the (X = O, S) rearrangement, a reaction of potential biological significance

Author:

Cameron Dale R.,Borrajo Alison M.P.,Thatcher Gregory R.J.,Bennett Brian M.

Abstract

The rearrangement of organic thionitrate to sulfenyl nitrite potentially mediates the release of nitric oxide from organic nitrates, such as nitroglycerin, in the presence of thiol. The biological activity of these nitrovasodilators is proposed to result from release of nitric oxide in vivo. The thionitrate rearrangement bears analogy to the rearrangement of peroxynitrous acid to nitric acid, which has been proposed to mediate the biological toxicity of nitric oxide and superoxide. In this paper, the two concerted rearrangement processes and competing homolytic reactions are explored using molecular orbital calculations at levels up to MP4SDQ/6-31G*//MP2/6-31G*. Examination of structure and energy for all conformers and isomers of RSONO2 (R = H, Me), models for organic thionitrates and their isomers, demonstrates that structures corresponding to thionitrates and sulfenyl nitrates are of similar energy. Free energies of reaction for homolysis of these compounds are low (ΔG0 < 19 kcal/mol), whereas the barrier for concerted rearrangement is large (ΔG(aq.) = 56 kcal/mol). The larger barrier for concerted rearrangement of peroxynitrous acid to nitric acid (ΔG(aq.) = 60 kcal/mol) again compares unfavourably with homolysis (ΔG0 < 11 kcal/mol for homolysis to NO2 or NO). The transition state structures, confirmed by normal mode and intrinsic reaction coordinate analysis, indicate that considerable structural reorganization is required for concerted rearrangement of the ground state species. These results suggest that concerted rearrangement is not likely to be a viable step in either biological process. However, rearrangement via homolysis and radical recombination may provide an energetically accessible pathway for peroxynitrous acid rearrangement to nitric acid and rearrangement of thionitrate to sulfenyl nitrite. In this case, NO2 will be a primary product of both reactions. Keywords: thionitrate, nitric oxide, peroxynitrite, nitrovasodilator, nitrate.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3