Abstract
The azomethane-sensitized pyrolysis of ethane was studied at low temperatures from 280 to 350 °C. Measurements were made of initial rates of formation of methane, nitrogen, and butane. From the rate of nitrogen production the rate constant for the azomethane decomposition into 2CH3 + N2 was[Formula: see text]A similar study of the propane decomposition, at temperatures from 260 to 300 °C, led to the value[Formula: see text]in satisfactory agreement. The rate of decomposition of the n-propyl radical into CH3 and C2H4 was obtained by comparing the rates of formation of C2H4 and n-C6H14; the rate constant was[Formula: see text]The activation energy of 31.4 kcal/mole, together with that of 8.9 kcal/mole for the reverse reaction obtained by Brinton, leads to a value of 20.3 kcal/mole for the dissociation energy of n-CH3—CH CH2 at 0 °K, and to a value of 22.8 at 25 °C. The corresponding values for the heats of formation 2of the n-propyl radical are 28.4 kcal/mole at 0 °K, and 23.1 kcal/mole at 25 °C. The dissociation energy of n-CH3CH2CH2—H is deduced to be 99.4 kcal/mole at 0 °K and 99.9 kcal/mole at 25 °C. An energy diagram is constructed for the various reactions of n-C3H7 and i-C3H7.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献