Modulation of endothelial cell shape by SPARC does not involve chelation of extracellular Ca2+ and Mg2+

Author:

Sage E. Helene

Abstract

SPARC (secreted protein, acidic and rich in cysteine) is an extracellular, Ca2+-binding protein that inhibits the spreading of newly plated cells and elicits a rounded morphology in spread cells. In this study, I investigated whether the rounding effect of SPARC depends on the ability of the protein to chelate Ca2+ at the cell surface. Bovine aortic endothelial cells were plated in the presence of different concentrations of SPARC and Ca2+; control experiments were performed with 1 mM EGTA and with Mg2+. Quantitative estimates of cell rounding were calculated according to a rounding index. SPARC, at concentrations between 0.15 and 0.58 μM, elicited rounding (or prevented spreading) of cells cultured for 16–38 h in 0.5–2.0 mM Ca2+. Addition of 0.5–2.0 mM Mg2+ to cells previously rounded in the presence of SPARC did not abrogate the effect of SPARC. When the levels of extracellular Ca2+ were adjusted with 1 mM EGTA to maximum values ranging from 7.1 to 320 μM, cells displayed a rounded morphology in the presence of exogenous SPARC. Although the rounding induced by 1 mM EGTA was essentially reversed by the inclusion of 2 mM Ca2+, cultures containing these reagents together with SPARC maintained the rounded phenotype. These results do not support a mechanism that involves the abstraction of Ca2+ from proteins at the cell surface or the provision of Ca2+ from native extracellular SPARC to cells. Therefore, SPARC does not appear to act as a local chelator of extracellular Ca2+ and Mg2+ and presumably exerts its function as a modulator of cell shape via a different pathway.Key words: SPARC, osteonectin, endothelial cells, cell shape.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3