ControllingGiardiaspp. andCryptosporidiumspp. in drinking water by microbial reduction processes

Author:

Finch Gordon R,Belosevic Miodrag

Abstract

Drinking water microbial reduction has evolved from simple, effective chlorination to control waterborne diseases such as cholera and typhoid fever to advanced systems using ozone, chlorine dioxide, ultraviolet radiation, and combinations of disinfectants to control waterborne diseases such as poliomyelitis, hepatitis, giardiasis, and cryptosporidiosis. Giardia spp. and Cryptosporidium spp. have posed a major challenge to the water industry from a variety of perspectives. They occur in low concentrations in source waters, their infective doses in humans are low when compared with typical waterborne viruses and bacteria, they are difficult to inactivate with chlorine compounds, and they are difficult to determine if they are dead when detected in the environment or after microbial reduction in water treatment. However, Giardia spp. and Cryptosporidium spp. are readily controlled by ozone or ultraviolet radiation over a wide range of water-quality conditions. Chlorine dioxide provides a simple alternative to chlorine in some circumstances. Using modern microbial reduction process design techniques such as the integrated disinfection design framework (IDDF) ensures the provision of drinking water with a low risk of transmitting human pathogens to the consumer.Key words: ozone, chlorine dioxide, chlorine, ultraviolet, disinfection, microbial reduction, drinking water, Giardia, Cryptosporidium, parasite.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cryptosporidium spp.: Challenges in Control and Potential Therapeutic Strategies;Intestinal Parasites - New Developments in Diagnosis, Treatment, Prevention and Future Directions [Working Title];2024-04-10

2. Giardia duodenalis;Reference Module in Biomedical Sciences;2021

3. A non-biological surrogate for sequential disinfection processes;Water Research;2004-08

4. Fluorescence resonance energy transfer (FRET)-based specific labeling ofCryptosporidium oocysts for detection in environmental samples;Cytometry;2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3