The effects of chronic trimetazidine treatment on mechanical function and fatty acid oxidation in diabetic rat hearts

Author:

Onay-Besikci Arzu1,Guner Sahika1,Arioglu Ebru1,Ozakca Isil1,Ozcelikay A. Tanju1,Altan V. Melih1

Affiliation:

1. Department of Pharmacology, Faculty of Pharmacy, Ankara University, Tandogan 06100, Ankara, Turkey.

Abstract

Clinical and experimental evidence suggest that increased rates of fatty acid oxidation in the myocardium result in impaired contractile function in both normal and diabetic hearts. Glucose utilization is decreased in type 1 diabetes, and fatty acid oxidation dominates for energy production at the expense of an increase in oxygen requirement. The objective of this study was to examine the effect of chronic treatment with trimetazidine (TMZ) on cardiac mechanical function and fatty acid oxidation in streptozocin (STZ)-diabetic rats. Spontaneously beating hearts from male Sprague–Dawley rats were subjected to a 60-minute aerobic perfusion period with a recirculating Krebs–Henseleit solution containing 11 mmol/L glucose, 100 μU/mL insulin, and 0.8 mmol/L palmitate prebound to 3% bovine serum albumin (BSA). Mechanical function of the hearts, as cardiac output × heart rate (in (mL/min)·(beats/min)·10–2), was deteriorated in diabetic (73 ± 4) and TMZ-treated diabetic (61 ± 7) groups compared with control (119 ± 3) and TMZ-treated controls (131 ± 6). TMZ treatment increased coronary flow in TMZ-treated control (23 ± 1 mL/min) hearts compared with untreated controls (18 ± 1 mL/min). The mRNA expression of 3-ketoacyl-CoA thiolase (3-KAT) was increased in diabetic hearts. The inhibitory effect of TMZ on fatty acid oxidation was not detected at 0.8 mmol/L palmitate in the perfusate. Addition of 1 μmol/L TMZ 30 min into the perfusion did not affect fatty acid oxidation rates, cardiac work, or coronary flow. Our results suggest that higher expression of 3-KAT in diabetic rats might require increased concentrations of TMZ for the inhibitory effect on fatty acid oxidation. A detailed kinetic analysis of 3-KAT using different concentrations of fatty acid will determine the fatty acid inhibitory concentration of TMZ in diabetic state where plasma fatty acid levels are increased.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3