Author:
Leiter D.,Huschilt J.,Szamosi G.
Abstract
The N-body problem is analyzed within the framework of a new formalism for relativistic point masses interacting via a scalar field, in which the problems of infinite self-energies are absent. A Lagrangian formalism is exhibited which yields the particle equations of motion in the form of a parameterized class of equations. The parameter determines the choice of boundary conditions which is chosen on the scalar-field equations. The existence or nonexistence of the relativistic nuclear hard-core effect, associated with the scalar-field interactions, is shown to depend critically on the particular set of boundary conditions which are imposed on the scalar-field equations. In particular, time-symmetric boundary conditions yield no hard-core repulsion, while retarded boundary conditions are shown to yield a hard-core repulsion at very short range.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献