Abstract
Agaricus bisporus sporocarps exhibiting characteristic 'drippy gill' symptoms from a natural outbreak were examined. Discrete bacterial droplets on the hymenial lamellae often coalesced to form ribbons of bacterial ooze. Longitudinal splits on the stipe were lined with a similar bacterial ooze. Bacteria isolated from both the hymenium and stipe were identified as Pseudomonas agarici, and were confirmed to be the causal organism by satisfying Koch's postulates. By light and transmission electron microscopy, the causal bacteria were found to colonize the extrahyphal spaces and degrade the extracellular matrix within affected sporocarps. Degradation of the extracellular matrix was shown to reduce the integrity of the sporocarp, and result in stipe splitting and hymenium disruption. In artificial inoculations of the pileus, bacteria were shown to exist predominantly in sporocarp tissue below the point of inoculation and above affected areas of the hymenium, indicating an approximately vertical passage through the sporocarp via the extracellular spaces. The dissolution of the extracellular matrix, and the observed failure of the bacterium to produce a toxin active against A. bisporus, allow the bacteria to pass through protective membranes unnoticed, and infect the stipe and hymenium prior to veil break. These observations dispel previous assumptions of intrahyphal existence and transmission. In the few instances in which the bacteria were observed to be intrahyphal, the host fungal cell wall was often broken, suggesting intrahyphal existence was opportunistic rather than obligatory. The taxonomic position of a bacterium isolated previously from sporocarps exhibiting symptoms similar to those of drippy gill was determined by examining the biochemical and nutritional profiles of the bacterium, and comparing them with other Pseudomonas agarici isolates.Key words: Agaricus bisporus, drippy gill, extracellular, intracellular, Pseudomonas agarici.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献