Comparative analysis of sigma factors RpoS, FliA, and RpoN in Edwardsiella tarda

Author:

Song ShanShan11,Xue Yuanyuan11,Liu Enfu11,Wang Keping11,Zhang Yuanxing11,Wu Haizhen11,Zhang Huizhan11

Affiliation:

1. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China.

Abstract

Sigma factors are important regulators that bacteria employ to cope with environmental changes. Studies on the functions of sigma factors have uncovered their roles in many important cellular activities, such as growth, stress tolerance, motility, biofilm formation, and virulence. However, comparative analyses of sigma factors that examine their common and unique features or elucidate their cross-regulatory relationships have rarely been conducted for Edwardsiella tarda. Here, we characterized and compared motility and resistance to oxidative stress of E. tarda strains complemented with rpoS, fliA, and rpoN mutants. The results suggest that the sigma factors FliA and RpoN regulated motility, whereas RpoS exhibited no such function. RpoS and RpoN were essential for oxidative stress resistance, whereas FliA had no obvious impact under oxidative stress conditions. Furthermore, 2-dimensional gel electrophoresis based proteomics analysis combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry revealed 12 differentially expressed protein spots that represented 11 proteins between the mutant and wild-type strains. Quantification of the expression of target genes by quantitative reverse transcription PCR confirmed the results of our proteomics analysis. Collectively, these results suggest that these sigma factors are multifunctional mediators involved in controlling the expression of many metabolic pathway genes.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3