Affiliation:
1. Process Engineering and Applied Science, Canadian Institute of Fermentation Technology, Dalhousie University, Halifax, NS B3J 2X4, Canada.
Abstract
Despite the ubiquitous distribution of oxylipins in plants, animals, and microbes, and the application of numerous analytical techniques to study these molecules, 3-OH oxylipins have never been quantitatively assayed in yeasts. The formation of heptafluorobutyrate methyl ester derivatives and subsequent analysis with gas chromatography – negative chemical ionization – mass spectrometry allowed for the first determination of yeast 3-OH oxylipins. The concentration of 3-OH 10:0 (0.68–4.82 ng/mg dry cell mass) in the SMA strain of Saccharomyces pastorianus grown in laboratory-scale beverage fermentations was elevated relative to oxylipin concentrations in plant tissues and macroalgae. In fermenting yeasts, the onset of 3-OH oxylipin formation has been related to fermentation progression and flocculation initiation. When the SMA strain was grown in laboratory-scale fermentations, the maximal sugar consumption rate preceded the lowest concentration of 3-OH 10:0 by ∼4.5 h and a distinct increase in 3-OH 10:0 concentration by ∼16.5 h.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quorum Sensing: A Major Regulator of Fungal Development;Developmental Biology in Prokaryotes and Lower Eukaryotes;2021