Evolutionary and physiological adaptations of aquatic invasive animals: r selection versus resistance

Author:

McMahon Robert F

Abstract

Invasive species have been characterized as tolerant of environmental extremes. This hypothesis was evaluated for invasive aquatic species in North America, particularly Asian clams, Corbicula fluminea, and zebra mussels, Dreissena polymorpha. Both species have rapid growth, early maturity, short life spans, and elevated fecundity, allowing rapid population recovery after reductions by rarefractive, environmental extremes. Extensive resistance capacities offer little adaptive value to invasive, r-selected species, because population reductions occur in their unstable habitats regardless of degree of stress tolerance. Thus, both species have relatively poor physiologic resistance, depending instead on elevated growth and fecundity for rapid population recovery. In contrast, native North American bivalve species are often adapted to stable habitats where perturbation is infrequent (i.e., freshwater unionoidean bivalves). They are characterized by slow growth, extended life spans, and low effective fecundities, slowing population recoveries (K-selected), and have evolved extensive resistance adaptations to avoid extirpation during environmental extremes. Review of resistance adaptations in other North American aquatic invaders revealed poorer or equivalent physiological tolerance relative to taxonomically related native species, suggesting that extensive physiological tolerance is not required for invasive success.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 238 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3