Salinity Preference, Thyroid Activity and the Seaward Migration of Four Species of Pacific Salmon (Oncorhynchus)

Author:

Baggerman Bertha

Abstract

In juvenile Pacific salmon the changes in salinity preference associated with seaward migration and thyroid activity were studied and used as criteria for the induction of the physiological condition required for migration (migration-disposition).Four species of Oncorhynchus (chum, pink, coho and sockeye) changed preference from fresh to salt water at the onset of seaward migration and maintained this preference throughout the migration season. At the end of this migration period coho and sockeye salmon changed preference from salt to fresh water if retained in fresh water, indicating a re-adaptation to this medium in which they may survive for several years. Chum and pink fry did not show this change in preference and usually died when retained in fresh water. They were apparently unable to re-adapt to this environment.The increasing day length in spring controls the time at which the change in preference from fresh to salt water takes place, and is thus involved in timing the induction of migration-disposition.The photoperiod seems to affect particularly the pituitary-thyroid system. Thyroid activity increases shortly before the onset of migration, remains high during the migration season, and decreases towards its end. The level of thyroid hormone in the blood influences salinity tolerance and preference and, thus, the induction of migration-disposition. Metamorphosis, osmotic "stress" and iodine content of the water may have some additional effect on thyroid activity, but are not the only factors responsible for thyroid hyperactivity during migration.Animals in which migration-disposition has been induced are thought to have become susceptible to appropriate external stimuli "releasing" migration.

Publisher

Canadian Science Publishing

Reference1 articles.

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The effects of abiotic factors on olfaction in fishes;Reference Module in Life Sciences;2023

2. Recognizing Salinity Threats in the Climate Crisis;Integrative and Comparative Biology;2022-05-31

3. Hormonal signatures of gonad maturity and seasonality of spawning in migrating hilsa, Tenualosa ilisha;Environmental Biology of Fishes;2021-11-25

4. The Role of the Thyroid Axis in Fish;Frontiers in Endocrinology;2020-11-06

5. Metamorphosis in Teleosts;Current Topics in Developmental Biology;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3