Regulation of extracellular matrix synthesis by mechanical stress

Author:

Chiquet Matthias,Koch Manuel,Matthisson Mark,Tannheimer Michael,Chiquet-Ehrismann Ruth

Abstract

The extracellular matrix (ECM) provides mechanical support to tissues and is a substrate for cell adhesion and differentiation. Cells bind to ECM via specific cell surface receptors such as integrins. When engaging with ECM ligands, these receptors can activate signal tranduction pathways within the cells and may act as mechanochemical transducers. Thus, interaction of cells with ECM can modulate gene expression although the exact mechanisms are not known. Among the genes that are, in part, controlled by cell–ECM interactions are those for certain ECM components themselves. Bone cells, for example, remodel their matrix and reorient bone trabeculae in response to mechanical strain. Recently, we found that fibroblasts attached to a strained collagen matrix produce more of the ECM glycoproteins tenascin and collagen XII than cells in a relaxed matrix. In vivo, these two proteins are specifically expressed in places where mechanical strain is high. We also showed that the chick tenascin gene promoter contains a novel cis-acting, "strain-responsive" element that causes enhanced transcription in cells attached to a strained collagen matrix. Similar enhancer elements might be present in the promoters of other genes induced by mechanical stress. It can be speculated that connective tissue cells sense force vectors in their ECM environment and react to altered mechanical needs by regulating the transcription of specific ECM genes; tins process is a prerequisite for matrix remodeling.Key words: extracellular matrix proteins, integrins, mechanical stress, gene regulation.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 169 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3