Abstract
The sequence of metabolic events leading to increased calorigenesis in brown adipose tissue has been reviewed. The first step of this sequence consists in the binding of norepinephrine to adrenergic receptors of the beta1 subtype. This results in the stimulation of adenylate cyclase and activation of lipolysis via the system of protein kinases. Hormone-sensitive lipases represent the "flux-generating" step regulating mitochondrial respiration. Fatty acids released from intracellular triglyceride droplets in consequence of lipase activation play a messenger role between lipolysis and mitochondrial respiration. They stimulate respiration by serving as substrates for beta oxidation (via carnitine-dependent pathways) and (or) by simultaneously increasing mitochondrial permeability to protons (physiological "loose coupling"). The control of brown adipose tissue respiration by lipolysis represents a self-regulatory process, as excessive concentrations of fatty acids retroinhibit lipolysis. At the mitochondrial level, fatty acids appear to interact with an "uncoupling" protein (thermogenin or 32 000 relative mass protein) localized in the inner membrane that confers upon brown adipose mitochondria a unique sensitivity for fatty acid uncoupling. This explains that, contrary to other tissues, respiration is principally controlled in brown adipose tissue by substrate supply (mainly long-chain fatty acids), rather than by the phosphorylation state ratio.
Publisher
Canadian Science Publishing
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献