Modelling of continuous crushing of ice in front of offshore structures

Author:

Brown T. G.,Morsy U. A.

Abstract

A one-dimensional finite element is developed to represent the continuous crushing and extrusion of ice in interactions with offshore structures. The element is developed with the objective of providing a model for the analysis of dynamic ice–structure interactions in which both nonsimultaneous and phase-locked behaviours occur. The element has two components: one to model the damage accumulation in intact ice and one to model the extrusion of pulverized ice between the intact ice and the structure. The intact but damaging ice behaviour is based on a rate theory approach to crack density and damaged material compliance which is a function of stress and damage. The extrusion component models a viscous-plastic material which is modelled using a Tresca failure criterion and viscous flow. The element is developed as part of an existing finite element package (Abaqus) through its user material and user element capabilities. The paper describes in detail the development and implementation of the element and presents sample results of its performance in continuous crushing interactions with a rigid structure. The results show that the element can be used as the interface between moving intact ice sheets and offshore structures modelled using the finite element method. Key words: ice, structures, dynamics, finite elements, rheology.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Reference7 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Seismic performance analysis of a wind turbine with a monopile foundation affected by sea ice based on a simple numerical method;Engineering Applications of Computational Fluid Mechanics;2021-01-01

2. Ice crushing forces on offshore structures: Global effective pressures and the ISO 19906 design equation;Cold Regions Science and Technology;2017-10

3. Experimental and analytical study of thermal stresses during pipe freezing;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2001-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3