Frequency and diversity of ectomycorrhizal and saprophytic macrofungi in the Laurentide Mountains of Quebec

Author:

Villeneuve Normand,Grandtner Miroslav M.,Fortin J. André

Abstract

Total macro fungus frequency in closed forest associations of the Laurentide Mountains varied little (147 – 185 %) from one to another. The macrofungal flora of the deciduous forest was composed mainly of many infrequent species, whereas coniferous forests had few, but very frequent, macrofungi. Total frequency was significantly lower (15%) in open stands of the spruce–cladina association. Species richness decreased gradually (from 125 to 34 species) towards the north and with increasing altitude. Both the Simpson and the Shannon–Wiener diversity indices were significantly lower in the coniferous forest when compared with the deciduous forest. This decrease in diversity was due to the scarcity of saprophytic fungi in mor humus, whereas the number of ectomycorrhizal species remained constant. The diversity of saprophytic fungi was related significantly to that of vascular plants, whereas the diversity of ectomycorrhizal macrofungi was related mainly to the percent cover of ectomycorrhizal hosts. A total of 195 species of macrofungi were recorded for the study sites. In the maple – yellow birch forest, most of the macrofungi were saprophytic members of the Tricholomataceae, Hygrophoraceae, Strophariaceae, and Clavariaceae, many being exclusive in this association. However, each biological group had approximately equal frequency (44–54%) and richness (37–45 taxa). Species composition of the coniferous forest differed from the former in the clear dominance of ectomycorrhizal macrofungi from the Cortinariaceae, Russulaceae, and the Boletaceae. In the black spruce – cladina association, saprophytic fungi were scarce and ectomycorrhizal species were also relatively infrequent. In all the sites, the equitability of macrofungal frequency was high, as seen by the high proportion of rare species. The decline in species richness observed in this study, when moving from deciduous to coniferous forests, corresponds well with the increase in environmental rigor and instability, as well as the decrease in the diversity of organic substrate and species of vascular plants.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3