Ontogeny and histochemistry of the intermediate and reproductive apices of Cosmos bipinnatus var. Sensation in response to gibberellin A3 and photoperiod

Author:

Molder Marje,Owens John N.

Abstract

Plants of Cosmos bipinnatus Cav. ‘Sensation’ (a quantitative short-day plant) were grown under continuous conditions favorable or unfavorable for flowering, and some plants in each group were treated with gibberellic acid (GA3). Floral apices of Cosmos are formed by the transition of previously vegetative apices. The vegetative apex shows a cytohistological zonation pattern superimposed upon a tunica–corpus organization. The vegetative apex passes into an intermediate stage presumed typical of many plants held under non-inductive conditions. This stage is marked by many cytological features characteristic of both reproductive and vegetative apices but leaves continue to be produced. The presence of the intermediate stage accounts for conflicting results obtained in physiological studies since there is great variation in response rate depending on age of plant and the stage of the apex at the start of an experiment. This stage is followed by a typical transitional stage marked by an increase in RNA content, increased mitotic activity, and a change in zonation. Elongation of the apex and internodes occurs followed by initiation of the involucral bracts and floret primordia, marking the beginning of the prefloral and inflorescence stages respectively.GA3 specifically induces Cosmos to flower under non-inductive conditions thereby influencing floral initiation in a facultative short-day plant. Microscopic examination of the rate of apical transition revealed that GA3 substituted effectively for short days but was not as efficient an inducer as were short days.

Publisher

Canadian Science Publishing

Subject

Plant Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3